Performance Optimization Strategies
Profile and optimize application performance for speed and scalability.
A Simple Analogy
Performance optimization is like optimizing a restaurant. Measure throughput (orders per hour), identify bottlenecks (slow grill, small kitchen), then fix them (bigger grill, more staff, better layout). Guess wrong, and you waste effort.
What Is Performance Optimization?
Performance optimization is the process of identifying and removing bottlenecks to make applications faster. It requires measurement, profiling, and iterative improvement.
Optimization Methodology
- Measure: Profile current performance
- Identify: Find bottlenecks
- Hypothesize: Guess what will help most
- Test: Verify improvement with measurements
- Iterate: Repeat until satisfied
Common Bottlenecks
| Layer | Examples | |-------|----------| | Database | Missing indexes, full table scans, N+1 queries | | API | Unnecessary serialization, large payloads | | Memory | Memory leaks, large allocations | | CPU | Inefficient algorithms, regex patterns | | Network | Slow APIs, large responses |
.NET Profiling
// Use Stopwatch to measure
var stopwatch = Stopwatch.StartNew();
// Expensive operation
var users = _repository.GetAllUsers();
stopwatch.Stop();
Console.WriteLine($"Elapsed: {stopwatch.ElapsedMilliseconds}ms");
// Use BenchmarkDotNet for detailed benchmarks
[MemoryDiagnoser]
public class StringConcatBenchmark
{
private const int N = 1000;
[Benchmark]
public string StringConcat()
{
var result = "";
for (int i = 0; i < N; i++)
result += "x";
return result;
}
[Benchmark]
public string StringBuilderConcat()
{
var sb = new StringBuilder();
for (int i = 0; i < N; i++)
sb.Append("x");
return sb.ToString();
}
}
Database Optimization
// Bad: N+1 queries
var users = _context.Users.ToList();
foreach (var user in users)
{
var orders = _context.Orders
.Where(o => o.UserId == user.Id)
.ToList(); // Database query in loop!
}
// Good: Single query with join
var result = _context.Users
.Include(u => u.Orders) // Load related data
.ToList();
// Good: Projection to reduce data
var userOrders = _context.Users
.Select(u => new
{
u.Name,
OrderCount = u.Orders.Count
})
.ToList(); // Less data transferred
Caching Optimization
// Bad: Recalculate expensive data on every request
public async Task<List<Product>> GetPopularProductsAsync()
{
// Expensive calculation
return await _context.Products
.Where(p => p.PurchaseCount > 1000)
.OrderByDescending(p => p.Rating)
.ToListAsync();
}
// Good: Cache result
public async Task<List<Product>> GetPopularProductsAsync()
{
const string cacheKey = "popular_products";
if (_cache.TryGetValue(cacheKey, out List<Product> cached))
return cached;
var products = await _context.Products
.Where(p => p.PurchaseCount > 1000)
.OrderByDescending(p => p.Rating)
.ToListAsync();
_cache.Set(cacheKey, products, TimeSpan.FromMinutes(30));
return products;
}
Async/Await Optimization
// Bad: Sequential async calls
var user = await GetUserAsync(id);
var orders = await GetOrdersAsync(user.Id);
var payments = await GetPaymentsAsync(user.Id);
// Good: Parallel async calls
var (user, orders, payments) = await (
GetUserAsync(id),
GetOrdersAsync(id),
GetPaymentsAsync(id)
).WhenAll();
Practical Performance Check
public class PerformanceMetrics
{
public async Task<PageLoadMetrics> MeasurePageLoadAsync()
{
var stopwatch = Stopwatch.StartNew();
// Database query
var dbWatch = Stopwatch.StartNew();
var data = await _repository.GetDataAsync();
dbWatch.Stop();
// Processing
var processWatch = Stopwatch.StartNew();
var processed = ProcessData(data);
processWatch.Stop();
// Serialization
var serializeWatch = Stopwatch.StartNew();
var json = JsonSerializer.Serialize(processed);
serializeWatch.Stop();
stopwatch.Stop();
return new PageLoadMetrics
{
TotalMs = stopwatch.ElapsedMilliseconds,
DatabaseMs = dbWatch.ElapsedMilliseconds,
ProcessingMs = processWatch.ElapsedMilliseconds,
SerializationMs = serializeWatch.ElapsedMilliseconds
};
}
}
Best Practices
- Measure before optimizing: Data-driven decisions
- Focus on bottlenecks: 80% improvement from 20% of work
- Profile in production: Conditions matter
- Test changes: Verify improvement with metrics
- Monitor over time: Catch regressions early
Related Concepts to Explore
- Application Insights monitoring
- Load testing with k6 or JMeter
- CDN usage for static assets
- Compression and minification
- Query analysis and EXPLAIN plans
Summary
Performance optimization requires systematic measurement and targeted improvements. Profile to identify bottlenecks, then apply database optimization, caching, and async patterns to achieve dramatic speed improvements.