Optimize Database ORM Interactions
Improve database performance through ORM optimization.
By EMEPublished: February 20, 2025
ormperformancequeriesindexingcaching
A Simple Analogy
ORM optimization is like traffic management. Fewer trips, smarter routes, batching orders together.
Why Optimize?
- Performance: Fewer database calls
- Scalability: Handle more users
- Cost: Reduce database usage
- UX: Faster response times
- Reliability: Less database strain
Eager vs Lazy Loading
// Lazy Loading (N+1 problem)
var users = _db.Users.ToList();
foreach (var user in users)
{
var orders = user.Orders; // One query per user!
}
// Eager Loading (better)
var users = _db.Users
.Include(u => u.Orders)
.ToList(); // Only 2 queries
// Explicit Loading
_db.Entry(user)
.Collection(u => u.Orders)
.Load();
Projection
// Don't do this - loads all columns
var users = _db.Users.ToList();
// Better - select only what you need
var userDtos = _db.Users
.Select(u => new UserDto
{
Id = u.Id,
Name = u.Name,
Email = u.Email
})
.ToList();
Batch Operations
// Bad - N queries
foreach (var product in products)
{
_db.Products.Update(product);
_db.SaveChanges();
}
// Good - 1 query
foreach (var product in products)
{
_db.Products.Update(product);
}
_db.SaveChanges();
// Better - Use batch operations
_db.Products.UpdateRange(products);
_db.SaveChanges();
Filtering Early
// Bad - loads all then filters
var activeUsers = _db.Users
.ToList()
.Where(u => u.IsActive)
.ToList();
// Good - filters in database
var activeUsers = _db.Users
.Where(u => u.IsActive)
.ToList();
Best Practices
- Projections: Select only needed fields
- Eager loading: Load related data intentionally
- Filtering: Push filters to database
- Indexing: Create indexes for common queries
- Profiling: Measure and optimize actual queries
Related Concepts
- Query execution plans
- Database indexing
- Caching strategies
- Denormalization
Summary
Optimize ORM by using eager loading, projections, batch operations, and pushing filters to the database.